

8

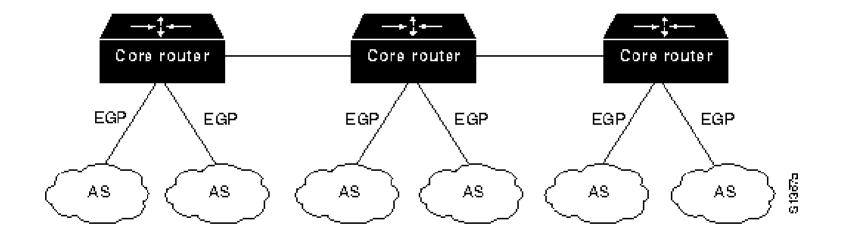
By Mike Dank for Radical Networks 2019 https://famicoman.com/bgp-radnets2019.odp @famicoman @famicoman@mastodon.sdf.org

What We're Covering

- Who are you?
- What is BGP?
- Some history of the protocol
- How it works!
- What goes wrong?
- How can I play with it?
- Questions!

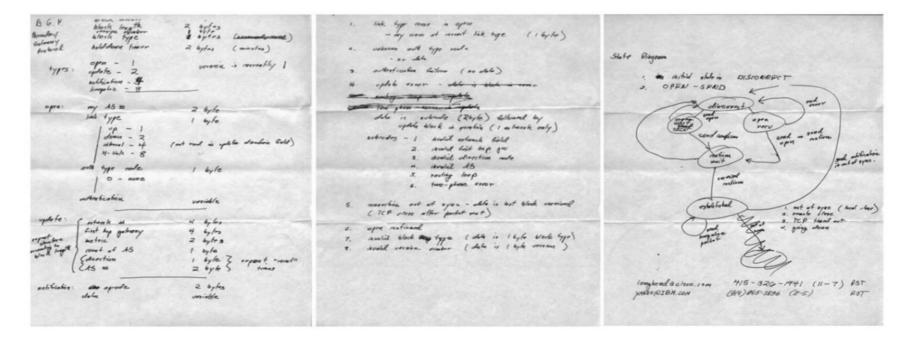
Who Am I?

- Not a network engineer!
- I do like mesh networks, though
 - <u>https://phillymesh.net</u>
- I also like knowing how the networks around us work
 - <u>https://networksofphilly.org</u>


What is **BGP**?

- BGP stands for Border Gateway Protocol
 - It's the protocol that makes the Internet work!
 - It facilitates the routing of IP packets with routing tables!
 - Think about it like the postal system
 - You need to send a letter to a friend
 - You drop the letter in the mailbox
 - The postal service picks the best route for the letter
 - The postal service uses that route to deliver the letter quickly and efficiently.
 - This is a *best-effort* protocol

State of the Internet in 1989

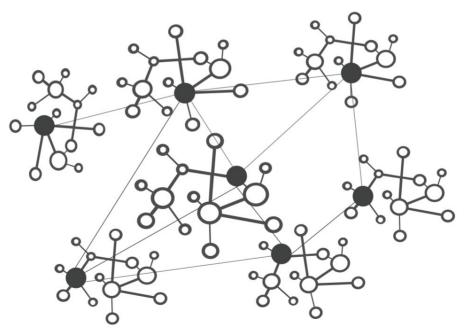

- NSFNET (National Science Foundation Network) is doing very well!
- The ARPANET is about to be shut down
- The existing routing protocol, Exterior Gateway Protocol (EGP), has problems^[0]
 - The Internet is growing at an exponential rate
 - Centralized topology
 - Routing table updates are too large for maximum transport size

EGP Topology^[2]

BGP - A Two-Napkin Protocol

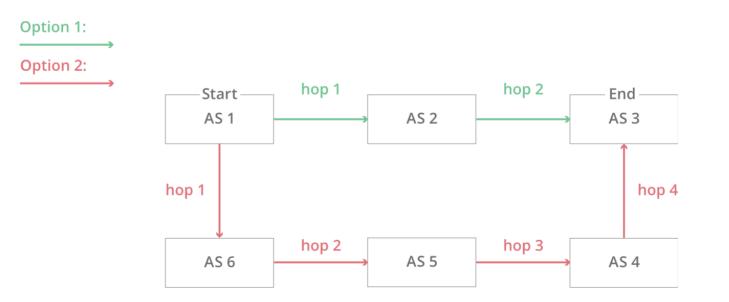
Kirk Lougheed of Cisco and Yakov Rekhter of IBM^[1]

BGP is Born


- **RFC 1105 introduced in 1989**^[11]
 - At this time, protocol changes were done voluntarily. Working software prevailed!
- BGP works on top of TCP
 - Sessions created on TCP port 179
- We currently use BGP-4 (2006)

Advantages of BGP

- Mesh topology, connect many Autonomous Systems (independent networks)
- "Best path" algorithm (path vector routing)
 - Routers advertise their network routes
 - Routers can choose to not route through different networks
- Scalable and flexible
- Handles route "flapping" (unstable links that go down) via dampening


BGP Topology

• A network of networks^[7]

How Data Flows Through Networks

• Let's go from AS 1 to AS 3^[7]

You Can See Where Your Traffic Goes!

famicoman@arsgang:~\$ traceroute radicalnetworks.org traceroute to radicalnetworks.org (90.187.37.21), 30 hops max, 60 byte packets 1 146.185.174.253 (146.185.174.253) 0.288 ms 0.265 ms 146.185.174.254 (146.185.174.254) 1.775 ms 2 138.197.250.14 (138.197.250.14) 0.195 ms 0.242 ms 138.197.250.16 (138.197.250.16) 0.309 ms 3 83.231.213.29 (83.231.213.29) 1.270 ms 83.231.213.93 (83.231.213.93) 0.382 ms 0.314 ms 4 ae-15.r24.amstn102.nl.bb.gin.ntt.net (129.250.4.38) 0.554 ms ae-6.r24.amstn102.nl.bb.gin.ntt.net (12 .250.3.225) 0.634 ms ae-15.r25.amstn102.nl.bb.gin.ntt.net (129.250.4.172) 0.660 ms 5 ae-3.r02.amstn102.nl.bb.gin.ntt.net (129.250.2.127) 0.577 ms ae-5.r02.amstn102.nl.bb.gin.ntt.net (12 .250.2.179) 0.624 ms ae-3.r02.amstn102.nl.bb.gin.ntt.net (129.250.2.127) 0.556 ms 6 * ae8-pcrl.aet.cw.net (195.2.22.125) 0.605 ms 0.583 ms ael9-xcrl.dus.cw.net (195.2.8.193) 4.542 ms 4.521 ms 4.497 ms kabel-gwl.dus.cw.net (194.177.175.154) 4.778 ms 4.795 ms 4.815 ms 8 ip5886edce.static.kabel-deutschland.de (88.134.237.206) 7.624 ms 5.040 ms ip5886edb6.static.kabel-d eutschland.de (88.134.237.182) 4.520 ms ip5886ca63.static.kabel-deutschland.de (88.134.202.99) 13.382 ms 13.461 ms 13.439 ms 10 ip5886edb3.static.kabel-deutschland.de (88.134.237.179) 14.809 ms ip5886edb1.static.kabel-deutschlan d.de (88.134.237.177) 13.504 ms ip5886edb3.static.kabel-deutschland.de (88.134.237.179) 14.502 ms ip5886c22d.static.kabel-deutschland.de (88.134.194.45) 13.885 ms ip5886c230.static.kabel-deutschland 12 de (88.134.194.48) 14.508 ms ip5886c22d.static.kabel-deutschland.de (88.134.194.45) 13.837 ms. 13 83-169-179-187-isp.superkabel.de (83.169.179.187) 13.467 ms 83-169-179-179-isp.superkabel.de (83.169 .179.179) 14.843 ms 14.949 ms rx0.weise7.org (90.187.37.21) 31.413 ms 31.227 ms 31.216 ms rx0.weise7.org (90.187.37.21) 31.193 ms 31.318 ms 28.754 ms

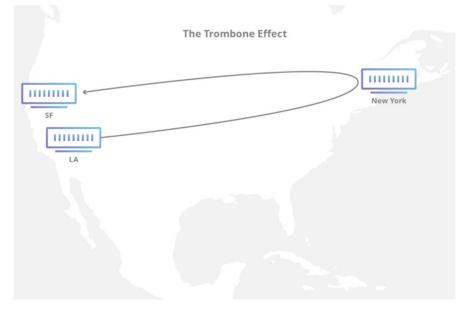
What Do I Need to Get on the Internet?

- Find your IANA Regional Internet Registry: AFRINIC, ARIN, APNIC, LACNIC or RIPE NCC
- IP Addresses!
 - IPv4 A /24 (256 Addresses, xxx.xxx.0 xxx.xxx.255)
 - \$25/address, \$6,425 Total Upfront^[4]
 - - \$250 TOTAL Upfront^[5]
- Autonomous System Number (ASN) (with info for two other networks agreeing to peer with you)
 - Looks like AS####
 - \$550 TOTAL Upfront^[5]
- Total Upfront Costs = \$7,225, Total Annual Recurring Costs = \$350^[5]

Find a Physical Location for the Internet

- IXPs (Internet eXchange Points) and Carrier Hotels
 - Building where many networks have a physical "edge"
 - PoPs (Point of Presence)
 - Facilitate links between networks to let data flow on the Internet
 - Robust buildings, built to last, often fireproof
 - Critical to keeping the Internet operating
 - Example: 60 Hudson, NYC^[6]

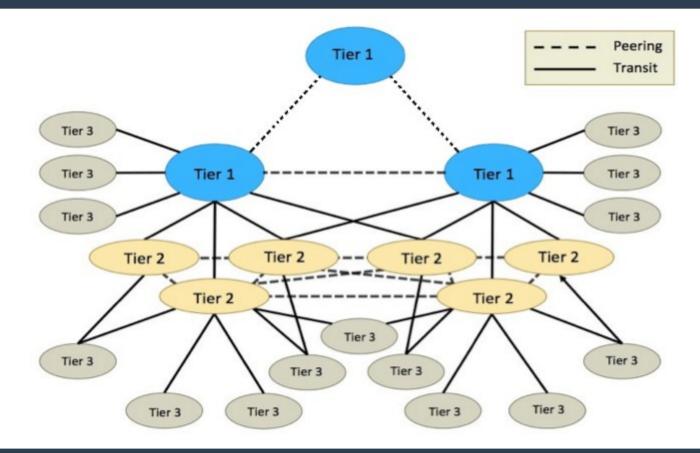
The Internet is HALF A BLOCK AWAY FROM YOU


- 811 10th Avenue, NYC
- AT&T backbone network site
 - Networks connect here!
- Named in The Intercept's 2018 article on NSA spy hubs^[17]
- AT&T transferred colocation assets and operations to Evoque in January 2019^[18]

(CC0) Mike Dank @famicoman

Why are IXPs Important?

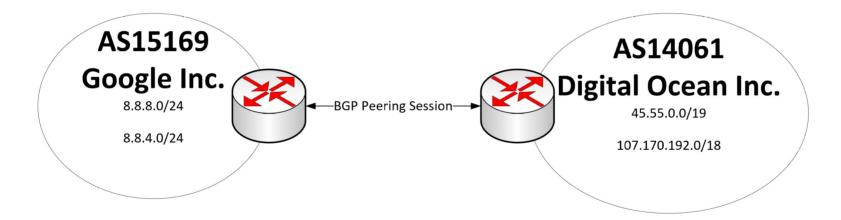
• Backbone ISPs can sometimes route traffic through distant locations^[8]


How Networks Connect

- Peering vs Upstream Transit
- Networks in data centers can connect with a layer 2 network, much like your home network (but with much faster speeds and bigger pipes)
- AS routers run BGP, and are generally Linux/BSD boxes or dedicated network gear (Cisco, etc.)
- Networks negotiate a connection deal. Free peering links are common, and mutually beneficial, but *upstream will almost always cost something*
- Networks announce routes to one another. You announce your IP range(s) to a peer, while they announce range(s) back.

The Tiered Internet

- Tier 1 networks make the backbone of the internet
 - Examples: AT&T, Sprint, Verizon, Century Link (Level 3), etc.
- Tier 2 networks are large ISPs, usually purchase transit
 - Examples: Cogent, Comcast, Hurricane Electric
- Tier 3 networks are last mile ISPs, solely purchase transit
 - Examples: Small ISPs, businesses, schools


Connecting the Tiers^[16]

(CC0) Mike Dank @famicoman

What Does Peering Look Like?

• Basic peering between two AS^[9]

BGP Operation

- Path Attributes
 - Shortest AS path "wins"
 - Filtering to prefer certain neighbors, use different routes for different sources (internal traffic vs external), routes based on aggregating traffic together, etc.

BGP Security

• BGP has few security precautions

- Most operators don't configure anything for security!
- What could go wrong?
 - Route leak
 - Content of the BGP table is maliciously/accidentally altered, traffic can't reach its destination
 - Route hijacking
 - Bad actor announces a victim's prefix, rerouting target traffic to itself
 - Denial-of-service (DoS)
 - Bad actor sends undesirable BGP traffic to a victim, exhausting resources

"[Security] wasn't even on the table."^[3] - Yakov Rekhter, Inventor of BGP

(CC0) Mike Dank @famicoman

"There was no concept that people would use this to do malicious things.... Security was not a big issue." - Kirk Lougheed, Inventor of BGP

(CC0) Mike Dank @famicoman

Some BGP Incidents

- April 1997 AS 7007 incident, ISP in Virgina leaks routing table, blackholes the Internet
- May 1998 L0pht testify before Congress, can "bring down the whole Internet in 30 minutes"
- February 2008 Pakistan attempts to block YouTube
- April 2010 Chinese ISP Hijacks Internet
- February 2014 Canadian ISP Hijacked to steal bitcoin
- April 2017 Russian Rostelecom originates 37 prefixes for Visa, Mastercard, etc.
- July 2018 Iran Telecommunication Company originated prefixes of Telegram Messenger
- November 2018 China Telecom site originated Google addresses
- June 2019 Large European mobile traffic was rerouted through China Telecom
- June 2019 Verizon advertises misconfigured routes from Allegheny Technologies

Pakistan Attempts to Block Youtube

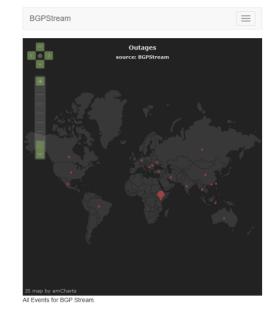
- February 24, 2008, Pakistan's state-owned telecom attempted to block YouTube
- Accidentally announced 256 addresses in YouTube's 208.65.153.0 network space (hole-punching)^[21]
 - Hong Kong-based PCCW (Pakistan's uplink) did not stop broadcasting the range
 - In 15 seconds, large Pacific-rim providers directed YouTube.com traffic to Pakistan ISP, in 45 seconds routers in the rest of the Internet to follow suit^[21]
 - Availability for YouTube dropped to 0 in an hour, took two hours to correct[21]
 - YouTube countered in minutes, advertising 64-address ranges^[21]

Canadian ISP Hijacked to Steal Bitcoin

- Between February and May 2014, a hacker used a Canadian ISP to announce addresses for a known Bitcoin mining pool
- Hacker changed config on ISPs router for 30 seconds at a time, 22 times total within the 3 month period^[23]
 - At least 51 different networks were compromised including Amazon,DigitalOcean, OVH, and 19 ISPs^{[22][23]}
 - Address of Bitcoin pool server was redirected to a machine under the hacker's control (running its own pool software)
 - Hacker was able to hijack mining pool to cash out \$83,000^[23]

European Mobile Traffic Routed Through China

- On June 6, 2019 Swiss data center colocation company Safe Host, accidentally leaked over 70,000 routes from internal routing tables to China Telecom^[24]
- China Telecom re-announced Safe Host's routes, interposing itself as one of the shortest ways to reach Safe Host's network and other nearby European telcos and ISPs^[24]
 - Mobile data from France, Holland, Switzerland was routed through China
 - Slow connection speeds for users
 - Route leak continued for 2 hours before being corrected
 - It is speculated that the Chinese government used this event for information gathering
 - Users don't even know their data went through a different network!


BGP Incidents Happen Everyday!

- Cisco's BGPStream
 - Real-time monitoring for BGP changes
 - <u>https://bgpstream.com/</u>

Mike Dank @famicoman

- On 10/15 (last Tuesday) there were...
 - 15 outages
 - 3 possible hijacks
 - 2 route leaks

(CCO)

Event type	Country	ASN	Start time (UTC)	End (UTC
BGP Leak		Origin AS: CYBER-TELECOM-AS, RU (AS 199991) Leaker AS: MTT-CONNECT-IVANOVO-AS Ivanovo Branch, RU (AS 198541)	2019-10-19 02:16:28	

Expected Origin AS: COGENT-174 -Cogent Communications US (AS 174)

How Can BGP Be Secured?

- NIST's "proof-of-concept demonstration"
 - Route Origin Validation (ROV) using Public Key Infrastructure verify routes are announced by proper AS. BGPSec has routers signing routes, creating a trusted chain^[12]
 - RFC 6810 in 2013[13]
 - RFC 8210 in 2017[14]
 - RFC 8206 in 2017[15]
 - As of August 2019, there are 92,000 unique ASNs, currently 84 use Route Origin
 Validation^[19]
- BGP Operations and Security, RFC 7454 (2015)^[20]
 - Like the missing BGP security manual, how to appropriately filter, TCP authentication settings, and more.

How You Can Play with BGP

- AMPRNet aka 44Net <u>https://www.ampr.org</u>
 - Experimental network for Ham radio operators, free to use!
 - Can get a /24 (256 addresses)
- DN42 <u>https://dn42.eu</u>
 - BGP test network, uses private ranges
 - Many amateur sysops
- router.city <u>https://router.city</u>
 - BGP test network I helped build
 - Framework for others to easily setup their own BGP testnet

(CC0) Mike Dank @famicoman

Mike Dank

https://famicoman.com/bgp-radnets2019.odp @famicoman @famicoman@mastodon.sdf.org Thank you!

Sources

- Title Slide https://pixabay.com/vectors/monster-hairy-halloween-creature-3764868/
- [0] https://computerhistory.org/blog/the-two-napkin-protocol/?key=the-two-napkin-protocol
- [1] https://www.stuff.co.nz/technology/digital-living/69048160/
- [2] http://wwwlehre.dhbw-stuttgart.de/~schulte/htme/55146.htm
- [3] https://www.washingtonpost.com/sf/business/2015/05/31/net-of-insecurity-part-2/?noredirect=on
- [4] https://www.ipv4connect.com/
- [5] https://www.arin.net/resources/fees/fee_schedule/#registration-services-plan
- [6] https://en.wikipedia.org/wiki/60_Hudson_Street#/media/File:Western_Union_building,_Manhattan_jeh_crop.jpg
- [7] https://www.cloudflare.com/learning/security/glossary/what-is-bgp/
- [8] https://www.cloudflare.com/learning/cdn/glossary/internet-exchange-point-ixp/
- [9] https://blog.cdemi.io/beginners-guide-to-understanding-bgp/
- [10] https://datapacket.com/blog/bgp-network-how-does-it-work/
- [11] https://tools.ietf.org/html/rfc1105
- [12] https://duo.com/decipher/nist-outlines-how-to-secure-bgp

(CC0) Mike Dank @famicoman

Sources (Continued)

- [13] https://tools.ietf.org/html/rfc6810
- [14] https://tools.ietf.org/html/rfc8210
- [15] https://tools.ietf.org/html/rfc8206
- [16] https://orhanergun.net/2017/01/tier-1-tier-2-tier-3-service-providers/
- [17] https://theintercept.com/2018/06/25/att-internet-nsa-spy-hubs/
- [18] https://about.att.com/story/2018/att_data_center_colocation_operations_assets.html
- [19] https://rov.rpki.net/
- [20] https://tools.ietf.org/html/rfc7454
- [21] https://www.cnet.com/news/how-pakistan-knocked-youtube-offline-and-how-to-make-sure-it-never-happens-again/
- [22] https://www.zdnet.com/article/hacker-hijacks-isps-steals-83000-from-bitcoin-mining-pools/
- [23] https://www.wired.com/2014/08/isp-bitcoin-theft/
- [24] https://www.zdnet.com/article/for-two-hours-a-large-chunk-of-european-mobile-traffic-was-rerouted-through-china/

(CC0) Mike Dank @famicoman

CC0 – No Rights Reserved!

https://creativecommons.org/share-your-work/public-domain/cc0/